Flexible Gap Filler for Ablative Thermal Protection Systems, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

NASA's Orion spacecraft will serve as the exploration vehicle that will carry a crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Planetary aerocapture and entry requires that the crew vehicle be equipped with a Thermal Protection System (TPS) comprised of lightweight, high performance ablator materials. Materials current under development include felt or woven material precursors impregnated with polymers (i.e. PICA) and/or additives to improve ablation and insulative performance, along with the block form of Avcoat ablator. There is a need for advancements in polymers for use in bonding and/or gap fills for tiles of advanced TPS for extreme entry conditions. The ideal binder would be a flexible, low glass transition temperature polymer with a high decomposition temperature/char yield (comparable to phenolic) and a high (>1%) strain-to-failure that is compatible with cured epoxy, phenolic, and/or cyanate ester. Engineers at Luna have developed a novel copolymer elastomer that has a very low glass transition (< -100 degrees F) and a decomposition temperature on par with typical phenolic ablatives. This resin can be highly filled to tune ablative properties and is compatible with glass and carbon fabric substrates.

Primary U.S. Work Locations and Key Partners

Flexible Gap Filler for Ablative Thermal Protection Systems, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Flexible Gap Filler for Ablative Thermal Protection Systems, Phase I

Completed Technology Project (2016 - 2016)

Organizations Performing Work	Role	Туре	Location
Luna Innovations,	Lead	Industry	Roanoke,
Inc.	Organization		Virginia
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations	
California	Virginia

Project Transitions

0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139732)

Images

Briefing Chart ImageFlexible Gap Filler for Ablative Thermal Protection Systems, Phase I

(https://techport.nasa.gov/imag e/131503)

Final Summary Chart Image

Flexible Gap Filler for Ablative Thermal Protection Systems, Phase I Project Image (https://techport.nasa.gov/imag e/125912)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Luna Innovations, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Benjamin Beck

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Flexible Gap Filler for Ablative Thermal Protection Systems, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - ☐ TX09.1 Aeroassist and Atmospheric Entry
 - ☐ TX09.1.1 Thermal Protection Systems

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

